Student Krylov Day 2015

نویسنده

  • Peter Sonneveld
چکیده

Krylov subspace methods have been applied successfully to solve various problems in Numerical Linear Algebra. The Netherlands have been a pioneer country in the development of Krylov methods over the past years. Methods like the Conjugate Gradient Squared (CGS), Bi-Conjugate Gradient Stabilized (BiCGSTAB), Nested GMRES (GMRESR), and the Induced Dimension Reduction method (IDR) are examples of Krylov methods developed at Dutch universities. In this context, we are organizing the Student Krylov Day 2015 at TU Delft in the framework of the SIAM Student Chapter Delft. We are also proud to welcome Peter Sonneveld as invited speaker to our workshop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems

IDR(s) is one of the most efficient methods for solving large sparse nonsymmetric linear systems of equations. We present two useful extensions of IDR(s), namely a flexible variant and a multi-shift variant. The algorithms exploit the underlying Hessenberg decomposition computed by IDR(s) to generate basis vectors for the Krylov subspace. The approximate solution vectors are computed using a Qu...

متن کامل

Generalized Rational Krylov Decompositions with an Application to Rational Approximation

Generalized rational Krylov decompositions are matrix relations which, under certain conditions, are associated with rational Krylov spaces. We study the algebraic properties of such decompositions and present an implicit Q theorem for rational Krylov spaces. Transformations on rational Krylov decompositions allow for changing the poles of a rational Krylov space without recomputation, and two ...

متن کامل

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

Communication-Avoiding Krylov Subspace Methods in Theory and Practice

متن کامل

Deflation by Restriction for the Inverse-free Preconditioned Krylov Subspace Method

A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigenvalues of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015